Structural and Magnetic Chirality in NiCo2TeO6
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The chiral nature of our surroundings is evident both structurally and functionally, and it appears to be a crucial aspect of life. However, understanding and investigating chirality at the atomic scale remains a significant challenge. Structural chirality can be measured using X-rays through the interference of the anomalous scattering factor, which produces subtle intensity variations that differentiate enantiomers, whereas both non-resonant and resonant magnetic scattering can be used to assess inversion domains in non collinear magnetic structure via the helicity of the probe, see [1] and references therein. Similarly, polarized neutrons allow the assessment of magnetic chirality and inversion domains [1], whereas structural chirality is measured exclusively via the tiny relativistic Schwinger term [1].
This study investigates the chiral, polar, and magnetoelectric compound NiCo₂TeO₆ [2,3]. This material adopts a structural configuration derived from the corundum R3c symmetry of Al₂O₃, but the substitution of Co and Te at the Al site disrupts the inversion and c-glide symmetry, leading to ferri-chiral structural arrangements, with often both chirality present in the same crystal.
By employing an approach similar to that used for Ba₃NbFe₃Si₂O₁₄ [1], we establish the connection between magnetic and structural chirality in NiCo₂TeO₆, as depicted in Fig. 1.
Although a clear theoretical framework of the microscopic interactions driving the chirality of NiCo2TeO6 is still missing, our experimental results provide a sound foundation to understand the origin of this phenomenon and to future application of the magnetoelectric properties of this system.
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Fig. 1. Scans of a magnetic peak measured with circularly polarized light at positions (a) P1 and (b) P2. (c) Magnetic chiral domains mapped by beam translation and polarization intensity differences. (d, e) X-ray dispersion at P1 and P2. (f) Structural chiral domains mapped through intensity variations. Positions P1 and P2 are marked in (c) and (f).
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