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This study demonstrates the capabilities of benchtop X-ray diffraction for investigating structural dynamics in both conventional and next-generation battery materials. By utilizing PYTHON scripts on large datasets, it is possible to conveniently correlate analytical data from different sources. Initially, we present a detailed in-operando analysis of LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode materials during electrochemical cycling (cf. Figure 1 left). Under controlled conditions (2.7-4.3V), two complete charge-discharge cycles revealed significant structural transformations. Derived from Rietveld refinements of NMC811 [2] using Profex [1], during charging, the c lattice parameter expanded from 1.42 nm to 1.45 nm, while the a parameter contracted from 0.284 nm to 0.281 nm, corresponding to lithium deintercalation (cf. Figure 1 right). The material demonstrated high specific capacity (180 mAh/g) [3-5] and excellent Coulombic efficiency (91.8% first cycle, 99.8% second cycle). Equally, it is possible to extend such an investigation to solid-state batteries utilizing e.g. sulfide-based electrolytes (Li2S-P2S5 system), where XRD analysis enables monitoring of interfacial reactions and structural stability during cycling. Therefore, a specialized test cell needs to be used to pressurize the solid-state electrolyte. The methodology successfully tracks phase evolution and potential degradation mechanisms in both the cathode material and the solid electrolyte, providing crucial insights for optimizing these next-generation battery systems. This comprehensive approach demonstrates how benchtop XRD can effectively support the development of both conventional and solid-state battery technologies.
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Figure 1. XRD Heat map correlated with the voltage curve of the potentiostat and trend of a and c of two charge / discharge cycles of NMC 811.
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