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Traditional crystallography assumes atoms as non-interacting entities (spherical Independent Atom Model, IAM). Quantum crystallography replaces this with a quantum-mechanically derived electron density, which accounts for bonding and delocalization. One may say that modern Quantum Crystallography is an interdisciplinary field that combines the study of atomic and molecular structures in solids with quantum mechanics to obtain more accurate and detailed descriptions of electron densities and atomic positions and interactions in crystals. My simplified definition of Quantum Crystallography is given in the title of my lecture. 
In this lecture, I will present the main results in the field of quantum crystallography that we have obtained in our group over the last years. They will concern both experimental quantitative studies of electron density in minerals using multipole refinement combined with high pressure and, especially, the results of validation of Hirshfeld Atom Refinement (HAR). 
I will begin with presentation of examples of our early results on experimental charge density studies of grossular[1],  langbeinite[2] and hsianghualite[3] under pressure and complement them by presenting our results of experimental charge density studies of  phase transitions in  calcite[4] and natrochalcite[5].  
Then we will switch over to validation of HAR by comparison of our results with the outcome of wast neutron and IAM X-ray studies performed for 70 compounds [6] for which structural and electron density results were  deposited in CSD and will also show details of our studies on  multiple crystals of hydrated -oxalic acid [7] and results of testing applicability of HAR  to organic & metalorganic structures, MOFs &COFs.[8-10]. Next, will present our search for the  best aspherical atom model aiming at understanding limitations of the model ( tests of HAR settings, alternative partitions,  exponential HAR) [11-14].
Will finish off with our HAR and PDF results of studies of different polymorphs of H2O and D2O ices[14-18]. Using PDF analysis of neutron powder diffraction data and Reverse Monte Carlo (RMC) refinement, it is possible to determine individual positions of D2O molecules in a large box simulation of a “large box” of the crystal lattice. Will discuss some new structural effects in the crystal structures of ices.
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Figure 1. (From  the left) Relocation of electron density at F1 ion in hsiangualite[3], atomic basins in the crystal lattice of langbeinite[2],  evolution of H-bonding in natrochalcite[5],  fragment of the unique, local  structure of ice VII[18].
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